figshare
Browse

Carbazole-Based Spiro[fluorene-9,9′-xanthene] as an Efficient Hole-Transporting Material for Perovskite Solar Cells

Posted on 2020-06-12 - 18:33
For the practical application of perovskite solar cells (PSC), it is desirable to have high efficiency, long-term stability, and low manufacturing cost. Therefore, it is required to develop inexpensive and well-performing hole-transporting materials (HTMs). In this study, we synthesized SFXDAnCBZ, which is a new carbazole-based spiro­[fluorene-9,9′-xanthene] (SFX) derivative, where the central core and end-cap units consist of SFX and N3,N6-bis­(di-4-anisylamino)-9H-carbazole (DAnCBZ), respectively, as an efficient and low-cost HTM for PSCs. Photoluminescence quenching at the SFXDAnCBZ/perovskite interface was more effective than at the perovskite/Spiro-OMeTAD (2,2′,7,7′-tetrakis-(N,N-di-p-methoxy-phenyl-amine) 9,9′spiro-bifluorene) interface. We fabricated a PSC with a power conversion efficiency (PCE) of 20.87% under 1 sun illumination (100 mW cm–2) using SFXDAnCBZ as an HTM. This value is comparable to that measured for the benchmark Spiro-OMeTAD. Thus, this result confirms that SFX core-based materials can be a new kind of HTMs for high-efficiency and low-cost PSCs.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?