figshare
Browse

Atomistic Simulations of Charge Separation at a Nanohybrid Interface: Relevance of Photoinduced Initial State Preparation

Version 2 2018-01-02, 15:36
Version 1 2017-12-26, 21:44
Posted on 2018-01-02 - 15:36
Charge separation kinetics at a nanohybrid interface are investigated in their dependence on ultrafast optical excitation. A prototypical organic/inorganic interface is considered. It is formed by a vertical stacking of 20 para-sexiphenyl molecules physisorbed on a ZnO nanocluster of 3783 atoms. A first principle parametrized Hamiltonian is employed, and the photoinduced subpicosecond evolution of Frenkel-excitons in the organic part is analyzed besides the formation of charge separated states across the interface. The interface absorption spectrum is calculated. Together, the data indicate that the charge separation is based on the direct excitation of the charge separated states but also on the migration of created Frenkel excitons to the interface with subsequent decay. Further, the photoinduced interface dynamics are compared with data resulting from direct set-ups of an initially excited state. Mostly such set-ups lead to substantially different charge separation processes.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?