figshare
Browse

Atomic Plane Misorientation Assisted Crystalline Quality Improvement in Epitaxial Growth of AlN on a Nanopatterned Sapphire (0001) Surface for Deep Ultraviolet Photoelectric Devices

Posted on 2023-03-09 - 19:35
The atomic-layer misorientation during the growth of a 5 μm thick AlN thin film on a patterned (0001) sapphire substrate was investigated by the scan rotation approach using a probe aberration-corrected scanning transmission electron microscope at a nanometer scale. Through the geometrical phase analysis of the resulting twisted atomic structure at different depths below the top surface, it is shown that over 10% of local tensile and compressive strain is balanced in a 1.6° twist of the c-planes within the first micron of AlN growth. As a consequence, the formation of threading dislocations is reduced. The in-plane twist is seen to decrease toward the layer surface down to 0.5°. Finally, growth has adopted the conventional step flow mechanism with a reduced density of emerging dislocations by the thickness of 5 μm. Our finding forecasts the possibility of understanding the relationship between atomic bilayer twist and local strain accommodation at a nanometer scale, which could provide guidance for achieving better crystal quality of AlN thin films on patterned substrates during epitaxy.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?