figshare
Browse

Alkoxy-Substituted Anthra[1,2‑c:5,6‑c′]bis([1,2,5]thiadiazole) (ATz): A New Electron-Acceptor Unit in the Semiconducting Polymers for Organic Electronics

Posted on 2018-07-13 - 18:30
A new type of thiadiazole-based acceptor unit and its donor–acceptor copolymers were synthesized and characterized to develop the high-performance semiconducting polymers for organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). We successfully synthesized an anthra­[1,2-c:5,6-c′]­bis­([1,2,5]­thiadiazole) (ATz) core and ATz-quaterthiophene copolymers. These copolymers possess a wide energy gap of ca. 1.8 eV and a deeper HOMO energy levels around −5.4 eV than that of typical thiadiazole–oligothiophene copolymers. Such weak electron-accepting nature may be due to the decreased electron affinity of the ATz core by an existence of alkoxy groups with strong electron-donating ability. The ATz copolymers exhibited good semiconducting properties with hole mobility of up to 0.03 cm2 V–1 s–1 and photovoltaic response with PCE of up to 5.7%, despite the unfavorable molecular orders, thin-film structure, and/or amorphous structure.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?