figshare
Browse

Active Sites in Single-Atom Fe–Nx–C Nanosheets for Selective Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene

Posted on 2020-07-22 - 17:04
Electrochemical dechlorination of 1,2-dichloroethane (DCE) is one of the prospective and economic strategies for the preparation of high-value ethylene. However, the exploration of advanced electrocatalysts with high reactivity and selectivity and the identification of their active sites are still a challenge. Herein, a single-atom (SA) Fe–Nx–C nanosheet with the presence of a highly efficient Fe–N4 coordination pattern is reported. The as-prepared single-atom electrocatalyst exhibits a higher reactivity and ethylene selectivity for DCE dechlorination reaction than those of the commercially adopted 20% Pt–C catalyst. By a combination of experiments and theoretical calculations, the atomically dispersed Fe center in the Fe–N4 structure was unveiled to be the dominating active site for electrochemical production of ethylene. Our work would offer an approach for the rational development of SA materials and supply crucial insight into the mechanism of ethylene production through the DCE dechlorination reaction.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?