figshare
Browse

ATP7B knockout disturbs copper and lipid metabolism in Caco-2 cells

Posted on 2020-03-10 - 22:08

Intestinal cells control delivery of lipids to the body by adsorption, storage and secretion. Copper (Cu) is an important trace element and has been shown to modulate lipid metabolism. Mutation of the liver Cu exporter ATP7B is the cause of Wilson disease and is associated with Cu accumulation in different tissues. To determine the relationship of Cu and lipid homeostasis in intestinal cells, a CRISPR/Cas9 knockout of ATP7B (KO) was introduced in Caco-2 cells. KO cells showed increased sensitivity to Cu, elevated intracellular Cu storage, and induction of genes regulating oxidative stress. Chylomicron structural protein ApoB48 was significantly downregulated in KO cells by Cu. Apolipoproteins ApoA1, ApoC3 and ApoE were constitutively induced by loss of ATP7B. Formation of small sized lipid droplets (LDs) was enhanced by Cu, whereas large sized LDs were reduced. Cu reduced triglyceride (TG) storage and secretion. Exposure of KO cells to oleic acid (OA) resulted in enhanced TG storage. The findings suggest that Cu represses intestinal TG lipogenesis, while loss of ATP7B results in OA-induced TG storage.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?