Guillaume Rousselet

Senior Lecturer (Neuroscience)

Glasgow, UK

Achievements

Submitting data during Open Access Week 2016Open in action
Popular data during Open Access Week 2016Popular
Most viewed data during Open Access Week 2016Winner

Publications

  • Robust correlation analyses: False positive and power validation using a new open source matlab toolbox DOI: 10.3389/fpsyg.2012.00606
  • Early ERPs to faces: Aging, luminance, and individual differences DOI: 10.3389/fpsyg.2013.00268
  • Improving standards in brain-behavior correlation analyses DOI: 10.3389/fnhum.2012.00119
  • Early ERPs to faces and objects are driven by phase, not amplitude spectrum information: Evidence from parametric, test-retest, single-subject analyses DOI: 10.1167/12.13.12
  • Does filtering preclude us from studying ERP time-courses? DOI: 10.3389/fpsyg.2012.00131
  • Visual object categorization in the brain: What can we really learn from ERP peaks? DOI: 10.3389/fnhum.2011.00156
  • Single-trial analyses: Why bother? DOI: 10.3389/fpsyg.2011.00322
  • Robust statistics show no evidence for a relationship between fiber density and memory performance DOI: 10.1073/pnas.1109188108
  • Reliability of ERP and single-trial analyses DOI: 10.1016/j.neuroimage.2011.06.052
  • Quantifying the time course of visual object processing using ERPs: It's time to up the game DOI: 10.3389/fpsyg.2011.00107
  • Modeling single-trial ERP reveals modulation of bottom-up face visual processing by top-down task constraints (in some subjects) DOI: 10.3389/fpsyg.2011.00137
  • LIMO EEG: A toolbox for hierarchical linear modeling of electroencephalographic data DOI: 10.1155/2011/831409
  • Vocal Attractiveness Increases by Averaging DOI: 10.1016/j.cub.2009.11.034
  • Neural repetition suppression to identity is abolished by other-race faces DOI: 10.1073/pnas.1005751107
  • Inverting faces elicits sensitivity to race on the N170 component: A cross-cultural study DOI: 10.1167/10.1.15
  • Healthy aging delays scalp EEG sensitivity to noise in a face discrimination task DOI: 10.3389/fpsyg.2010.00019
  • Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise DOI: 10.1167/9.1.2
  • How do amplitude spectra influence rapid animal detection? DOI: 10.1016/j.visres.2009.09.021
  • Electrophysiological evidence for an early processing of human voices DOI: 10.1186/1471-2202-10-127
  • Brain classification reveals the right cerebellum as the best biomarker of dyslexia DOI: 10.1186/1471-2202-10-67
  • Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach DOI: 10.1186/1471-2202-10-114
  • Time course and robustness of ERP object and face differences DOI: 10.1167/8.12.3
  • Parametric study of EEG sensitivity to phase noise during face processing DOI: 10.1186/1471-2202-9-98
  • Early interference of context congruence on object processing in rapid visual categorization of natural scenes DOI: 10.1167/8.13.11
  • Single-trial EEG dynamics of object and face visual processing DOI: 10.1016/j.neuroimage.2007.02.052
  • Processing scene context: Fast categorization and object interference DOI: 10.1016/j.visres.2007.09.013
  • Limits of event-related potential differences in tracking object processing speed DOI: 10.1162/jocn.2007.19.8.1241
  • Controlling interstimulus perceptual variance does not abolish N170 face sensitivity [1] DOI: 10.1038/nn0707-801
  • Spatial scaling factors explain eccentricity effects on face ERPs DOI: 10.1167/5.10.1
  • How long to get to the "gist" of real-world natural scenes? DOI: 10.1080/13506280444000553
  • Spatiotemporal analyses of the N170 for human faces, animal faces and objects in natural scenes DOI: 10.1097/00001756-200412030-00009
  • Processing of one, two or four natural scenes in humans: The limits of parallelism DOI: 10.1016/j.visres.2003.11.014
  • Interaction of top-down and bottom-up processing in the fast visual analysis of natural scenes DOI: 10.1016/j.cogbrainres.2003.11.010
  • How parallel is visual processing in the ventral pathway? DOI: 10.1016/j.tics.2004.06.003
  • Comparing animal and face processing in the context of natural scenes using a fast categorization task DOI: 10.1016/j.neucom.2004.01.127
  • Animal and human faces in natural scenes: How specific to human faces is the N170 ERP component? DOI: 10.1167/4.1.2
  • Taking the MAX from neuronal responses DOI: 10.1016/S1364-6613(03)00023-8
  • Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes DOI: 10.1167/3.6.5
  • Parallel processing in high-level categorization of natural images DOI: 10.1038/nn866
  • Visual Object Categorization in the Brain: What Can We Really Learn from ERP Peaks? DOI: http://dx.doi.org/10.3389/fnhum.2011.00156
  • Taking the MAX from neuronal responses DOI: http://dx.doi.org/10.1016/s1364-6613(03)00023-8
  • Spatiotemporal analyses of the N170 for human faces, animal faces and objects in natural scenes DOI: http://dx.doi.org/10.1097/00001756-200412030-00009
  • Single-Trial Analyses: Why Bother? DOI: http://dx.doi.org/10.3389/fpsyg.2011.00322
  • Reliability of ERP and single-trial analyses DOI: http://dx.doi.org/10.1016/j.neuroimage.2011.06.052
  • Quantifying the Time Course of Visual Object Processing Using ERPs: It's Time to Up the Game DOI: http://dx.doi.org/10.3389/fpsyg.2011.00107
  • Processing scene context: Fast categorization and object interference DOI: http://dx.doi.org/10.1016/j.visres.2007.09.013
  • Processing of one, two or four natural scenes in humans: the limits of parallelism DOI: http://dx.doi.org/10.1016/j.visres.2003.11.014
  • Parallel processing in high-level categorization of natural images DOI: http://dx.doi.org/10.1038/nn866
  • LIMO EEG: A Toolbox for Hierarchical LInear MOdeling of ElectroEncephaloGraphic Data DOI: http://dx.doi.org/10.1155/2011/831409
  • Improving standards in brain-behavior correlation analyses DOI: http://dx.doi.org/10.3389/fnhum.2012.00119
  • How parallel is visual processing in the ventral pathway? DOI: http://dx.doi.org/10.1016/j.tics.2004.06.003
  • How long to get to the “gist” of real-world natural scenes? DOI: http://dx.doi.org/10.1080/13506280444000553
  • How do amplitude spectra influence rapid animal detection? DOI: http://dx.doi.org/10.1016/j.visres.2009.09.021
  • Does Filtering Preclude Us from Studying ERP Time-Courses? DOI: http://dx.doi.org/10.3389/fpsyg.2012.00131
  • Controlling interstimulus perceptual variance does not abolish N170 face sensitivity DOI: http://dx.doi.org/10.1038/nn0707-801
  • Comparing animal and face processing in the context of natural scenes using a fast categorization task DOI: http://dx.doi.org/10.1016/j.neucom.2004.01.127
  • Brain classification reveals the right cerebellum as the best biomarker of dyslexia DOI: http://dx.doi.org/10.1186/1471-2202-10-67

Usage metrics

Co-workers & collaborators

Rand Wilcox

Rand Wilcox

Cyril Pernet

Cyril Pernet

Katarzyna Jaworska

Post-doctoral research associate - Glasgow

Katarzyna Jaworska

Guillaume Rousselet's public data