Powerpoint Template_PRM Workshop 2019_wide.pptx (4.1 MB)

Deep Learning Application for 4D Pressure Saturation Inversion Compared to Bayesian Inversion on North Sea Data

Download (4.1 MB)
presentation
posted on 07.04.2019, 23:03 by Jesper Soeren Dramsch, Gustavo Corte, Hamed Amini, Mikael Lüthje, Colin MacBeth
In this work we present a deep neural network inversion on map-based 4D seismic data for pressure and saturation. We present a novel neural network architecture that trains on synthetic data and provides insights into observed field seismic. The network explicitly includes AVO gradient calculation within the network as physical knowledge to stabilize pressure and saturation changes separation. We apply the method to Schiehallion field data and go on to compare the results to Bayesian inversion results. Despite not using convolutional neural networks for spatial information, we produce maps with good signal to noise ratio and coherency.

History

Licence

Exports