figshare
Browse
arXiv.svg (5.58 kB)

Two-Photon Interference LiDAR Imaging

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:46 authored by Robbie Murray, Ashley Lyons
Optical Coherence Tomography (OCT) is a key 3D imaging technology that provides micron scale depth resolution for bio-imaging. This resolution substantially surpasses what it typically achieved in Light Detection and Ranging (LiDAR) which is often limited to the millimetre scale due to the impulse response of the detection electronics. However, the lack of coherence in LiDAR scenes, arising from mechanical motion for example, make OCT practically infeasible. Here we present a quantum interference inspired approach to LiDAR which achieves OCT depth resolutions without the need for high levels of stability. We demonstrate depth imaging capabilities with an effective impulse response of 70 {\mu}m, thereby allowing ranging and multiple reflections to be discerned with much higher resolution than conventional LiDAR approaches. This enhanced resolution opens up avenues for LiDAR in 3D facial recognition, and small feature detection/tracking as well as enhancing the capabilities of more complex time-of-flight methods such as imaging through obscurants and non-line-of-sight imaging.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC