figshare
Browse
arXiv.svg (5.58 kB)

To What Extent Can Space Be Compressed? Bandwidth Limits of Spaceplates

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:58 authored by Kunal Shastri, Orad Reshef, Robert W. Boyd, Jeff S. Lundeen, Francesco Monticone
Spaceplates are novel flat-optic devices that implement the optical response of a free-space volume over a smaller length, effectively "compressing space" for light propagation. Together with flat lenses such as metalenses or diffractive lenses, spaceplates have the potential to enable a drastic miniaturization of any free-space optical system. While the fundamental and practical bounds on the performance metrics of flat lenses have been well studied in recent years, a similar understanding of the ultimate limits of spaceplates is lacking, especially regarding the issue of bandwidth, which remains as a crucial roadblock for the adoption of this platform. In this work, we derive fundamental bounds on the bandwidth of spaceplates as a function of their numerical aperture and compression ratio (ratio by which the free-space pathway is compressed). The general form of these bounds is universal and can be applied and specialized for different broad classes of space-compression devices, regardless of their particular implementation. Our findings also offer relevant insights into the physical mechanism at the origin of generic space-compression effects, and may guide the design of higher performance spaceplates, opening new opportunities for ultra-compact, monolithic, planar optical systems for a variety of applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC