figshare
Browse
arXiv.svg (5.58 kB)

Space-time wave packets localized in all dimensions

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:23 authored by Murat Yessenov, Justin Free, Zhaozhong Chen, Eric G. Johnson, Martin P. J. Lavery, Miguel A. Alonso, Ayman F. Abouraddy
Optical wave packets that are localized in space and time, but nevertheless overcome diffraction and travel rigidly in free space, are a long sought-after field structure with applications ranging from microscopy and remote sensing, to nonlinear and quantum optics. However, synthesizing such wave packets requires introducing non-differentiable angular dispersion with high spectral precision in two transverse dimensions, a capability that has eluded optics to date. Here, we describe an experimental strategy capable of sculpting the spatio-temporal spectrum of a generic pulsed beam by introducing arbitrary radial chirp via two-dimensional conformal coordinate transformations of the spectrally resolved field. This procedure yields propagation-invariant `space-time' wave packets localized in all dimensions, with tunable group velocity in the range from $0.7c$ to $1.8c$ in free space, and endowed with prescribed orbital angular momentum. By providing unprecedented flexibility in sculpting the three-dimensional structure of pulsed optical fields, our experimental strategy promises to be a versatile platform for the emerging enterprise of space-time optics.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC