figshare
Browse
arXiv.svg (5.58 kB)

Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:27 authored by Andrea Konečná, Jiahan Li, James H. Edgar, F. Javier García de Abajo, Jordan A. Hachtel
Hyperbolic phonon polaritons (HPhPs) in hexagonal boron nitride (hBN) enable the direct manipulation of mid-infrared light at nanometer scales, many orders of magnitude below the free-space light wavelength. High resolution monochromated electron energy-loss spectroscopy (EELS) facilitates measurement of excitations with energies extending into the mid-infrared while maintaining nanoscale spatial resolution, making it ideal for detecting HPhPs. The electron beam is a precise source and probe of HPhPs, that allows us to perform novel experiments to observe nanoscale confinement in HPhP structures and directly extract hBN polariton dispersions for both modes in the bulk of the flake and modes along the edge. Our measurements reveal technologically important non-trivial phenomena, such as localized polaritons induced by environmental heterogeneity, enhanced and suppressed excitation due to two-dimensional interference, and strong modification of high-momenta excitations of edge-confined polaritons by nanoscale heterogeneity on edge boundaries. Our work opens exciting prospects for the design of real-world optical mid-infrared devices based on hyperbolic polaritons.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC