figshare
Browse
arXiv.svg (5.58 kB)

Quantum Induced Coherence Light Detection and Ranging

Download (5.58 kB)
Version 2 2023-02-08, 17:00
Version 1 2023-01-10, 03:36
preprint
posted on 2023-02-08, 17:00 authored by Gewei Qian, Xingqi Xu, Shun-An Zhu, Chenran Xu, Fei Gao, V. V. Yakovlev, Xu Liu, Shi-Yao Zhu, Da-Wei Wang
Quantum illumination has been proposed and demonstrated to improve the signal-to-noise ratio (SNR) in light detection and ranging (LiDAR). When relying on coincidence detection, such a quantum LiDAR is limited by the response time of the detector and suffers from jamming noise. Inspired by the Zou-Wang-Mandel experiment, we design, construct and validate a quantum induced coherence (QuIC) LiDAR which is inherently immune to ambient and jamming noises. In traditional LiDAR the direct detection of the reflected probe photons suffers from deteriorating SNR for increasing background noise. In QuIC LiDAR we circumvent this obstacle by only detecting the entangled reference photons, whose single-photon interference fringes are used to obtain the distance of the object, while the reflected probe photons are used to erase path information of the reference photons. In consequence, the noise accompanying the reflected probe light has no effect on the detected signal. We demonstrate such noise resilience with both LED and laser light to mimic the background noise and jamming attack. The proposed method paves a new way of battling noise in precise quantum electromagnetic sensing and ranging.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC