figshare
Browse
arXiv.svg (5.58 kB)

Photonic crystal cavity IQ modulators in thin-film lithium niobate for coherent communications

Download (5.58 kB)
preprint
posted on 2023-12-31, 17:00 authored by Hugo Larocque, Dashiell L. P. Vitullo, Alexander Sludds, Hamed Sattari, Ian Christen, Gregory Choong, Ivan Prieto, Jacopo Leo, Homa Zarebidaki, Sanjaya Lohani, Brian T. Kirby, Öney O. Soykal, Moe Soltani, Amir H. Ghadimi, Dirk Englund, Mikkel Heuck
Thin-Film Lithium Niobate (TFLN) is an emerging integrated photonic platform showing great promise due to its large second-order nonlinearity at microwave and optical frequencies, cryogenic compatibility, large piezoelectric response, and low optical loss at visible and near-infrared wavelengths. These properties enabled Mach-Zehnder interferometer-based devices to demonstrate amplitude- and in-phase/quadrature (IQ) modulation at voltage levels compatible with complementary metal-oxide-semiconductor (CMOS) electronics. Maintaining low-voltage operation requires centimeter-scale device lengths, making it challenging to realize the large-scale circuits required by ever-increasing bandwidth demands in data communications. Reduced device sizes reaching the 10 um scale are possible with photonic crystal (PhC) cavities. So far, their operation has been limited to modulation of amplitudes and required circulators or lacked cascadability. Here, we demonstrate a compact IQ modulator using two PhC cavities operating as phase shifters in a Fabry-Perot-enhanced Michelson interferometer configuration. It supports cascadable amplitude and phase modulation at GHz bandwidths with CMOS-compatible voltages. While the bandwidth limitation of resonant devices is often considered detrimental, their compactness enables dense co-integration with CMOS electronics where clock-rate-level operation (few GHz) removes power-hungry electrical time-multiplexing. Recent demonstrations of chip-scale transceivers with dense-wavelength division multiplied transceivers could be monolithically implemented and driven toward ultimate information densities using TFLN electro-optic frequency combs and our PhC IQ modulators.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC