figshare
Browse
arXiv.svg (5.58 kB)

Baseline-free Quantitative Absorption Spectroscopy Based on Cepstral Analysis

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:38 authored by Ryan K. Cole, Amanda S. Makowiecki, Nazanin Hoghooghi, Gregory B. Rieker
The accuracy of quantitative absorption spectroscopy depends on correctly distinguishing molecular absorption signatures in a measured transmission spectrum from the varying intensity or "baseline" of the light source. Baseline correction becomes particularly difficult when the measurement involves complex, broadly absorbing molecules or non-ideal transmission effects such as etalons. We demonstrate a technique that eliminates the need to account for the laser intensity in absorption spectroscopy by converting the measured transmission spectrum of a gas sample to a modified form of the time-domain molecular free induction decay (m-FID) using a cepstral analysis technique developed for audio signal processing. Much of the m-FID signal is temporally separated from and independent of the source intensity, and this portion can be fit directly with a model to determine sample gas properties without correcting for the light source intensity. We validate the new approach in several complex absorption spectroscopy scenarios and discuss its limitations. The technique is applicable to spectra obtained with any absorption spectrometer and provides a fast and accurate approach for analyzing complex spectra.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC