figshare
Browse
arXiv.svg (5.58 kB)

65 GOPS/neuron Photonic Tensor Core with Thin-film Lithium Niobate Photonics

Download (5.58 kB)
preprint
posted on 2023-11-30, 22:00 authored by Zhongjin Lin, Bhavin J. Shastri, Shangxuan Yu, Jingxiang Song, Yuntao Zhu, Arman Safarnejadian, Wangning Cai, Yanmei Lin, Wei Ke, Mustafa Hammood, Tianye Wang, Mengyue Xu, Zibo Zheng, Mohammed Al-Qadasi, Omid Esmaeeli, Mohamed Rahim, Grzegorz Pakulski, Jens Schmid, Pedro Barrios, Weihong Jiang, Hugh Morison, Matthew Mitchell, Xiaogang Qiang, Xun Guan, Nicolas A. F. Jaeger, Leslie A. n Rusch, Sudip Shekhar, Wei Shi, Siyuan Yu, Xinlun Cai, Lukas Chrostowski
Photonics offers a transformative approach to artificial intelligence (AI) and neuromorphic computing by providing low latency, high bandwidth, and energy-efficient computations. Here, we introduce a photonic tensor core processor enabled by time-multiplexed inputs and charge-integrated outputs. This fully integrated processor, comprising only two thin-film lithium niobate (TFLN) modulators, a III-V laser, and a charge-integration photoreceiver, can implement an entire layer of a neural network. It can execute 65 billion operations per second (GOPS) per neuron, including simultaneous weight updates-a hitherto unachieved speed. Our processor stands out from conventional photonic processors, which have static weights set during training, as it supports fast "hardware-in-the-loop" training, and can dynamically adjust the inputs (fan-in) and outputs (fan-out) within a layer, thereby enhancing its versatility. Our processor can perform large-scale dot-product operations with vector dimensions up to 131,072. Furthermore, it successfully classifies (supervised learning) and clusters (unsupervised learning) 112*112-pixel images after "hardware-in-the-loop" training. To handle "hardware-in-the-loop" training for clustering AI tasks, we provide a solution for multiplications involving two negative numbers based on our processor.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC