figshare
Browse
am1c14113_si_001.pdf (1.05 MB)

In Situ Functionalization of Cellulose with Zinc Pyrithione for Antimicrobial Applications

Download (1.05 MB)
journal contribution
posted on 2021-10-04, 18:03 authored by Neeta Kumari, Sambit Nath Bhattacharya, Shukla Das, Shyama Datt, Taru Singh, Manjeet Jassal, Ashwini K. Agrawal
Considering the public health demands for stronger and effective personal protective clothing, herein, antimicrobial fabrics using a known bacteriostatic and fungistatic drug zinc pyrithione (ZPT) have been reported. ZPT was synthesized in situ on cellulosic fabric, viscose (VC), using a zinc metal precursor and 2-mercaptopyridine-N-oxide as a ligand (VC-ZPT). For comparison, viscose was also phosphorylated (VP) before in situ functionalization with ZPT (VP-ZPT). Both approaches provided adequate protection from microbes; however, functionalization of cellulose with phosphate (VP) resulted in the formation of a linking group between cellulose and ZPT, which exhibited better uniformity of ZPT over the fabric surface and higher durability to washing. The functionalization was confirmed by inductively coupled plasma mass spectroscopy (ICP-MS), scanning electron microscopy (SEM), and Raman spectroscopy. Further, the bonding of phosphate with ZPT was confirmed by 31P solid-state NMR. The physical properties, such as appearance, bending length, and mechanical strength, of the treated fabrics remained unchanged. The antimicrobial activities of VP-ZPT with VC-ZPT were studied against Escherichia coli, Staphylococcus aureus, and Candida albicans, which were found to be effective until 20 laundry cycles in VP-ZPT. Additionally, VP-ZPT samples exhibited poor adherence of bacteria on the fabric surface. The functionalized fabrics may find applications for topical skin diseases in reducing the necessity of repeated use of antibiotic ointments.

History