figshare
Browse
friedlaendar-whaledistribution-2006.pdf (14.48 MB)

Whale distribution in relation to prey abundance and oceanographic processes in the shelf waters of the Western Antarctic Peninsula

Download (14.48 MB)
journal contribution
posted on 2006-07-18, 00:00 authored by A Friedlaendar, P Halpin, S Qian, G Lawson, P Wiebe, Deborah Thiele, A Read
The Western Antarctic Peninsula (WAP) is a biologically rich area supporting large standing stocks of krill and top predators (including whales, seals and seabirds). Physical forcing greatly affects productivity, recruitment, survival and distribution of krill in this area. In turn, such interactions are likely to affect the distribution of baleen whales. The Southern Ocean GLOBEC research program aims to explore the relationships and interactions between the environment, krill and predators around Marguerite Bay (WAP) in autumn 2001 and 2002. Bathymetric and environmental variables including acoustic backscattering as an indicator of prey abundance were used to model whale distribution patterns. We used an iterative approach employing (1) classification and regression tree (CART) models to identify oceanographic and ecological variables contributing to variability in humpback Megaptera novaeangliae and minke Balaenoptera acutorstrata whale distribution, and (2) generalized additive models (GAMs) to elucidate functional ecological relationships between these variables and whale distribution. The CART models indicated that the cetacean distribution was tightly coupled with zooplankton acoustic volume backscatter in the upper (25 to 100 m), and middle (100 to 300 m) portions of the water column. Whale distribution was also related to distance from the ice edge and bathymetric slope. The GAMs indicated a persistent, strong, positive relationship between increasing zooplankton volume and whale relative abundance. Furthermore, there was a lower limit for averaged acoustic volume backscatter of zooplankton below which the relationship between whales and prey was not significant. The GAMs also supported an annual relationship between whale distribution, distance from the ice edge and bathymetric slope, suggesting that these are important features for aggregating prey. Our results demonstrate that during the 2 yr study, whales were consistently and predictably associated with the distribution of zooplankton. Thus, humpback and minke whales may be able to locate physical features and oceanographic processes that enhance prey aggregation.

History

Journal

Marine ecology progress series

Volume

317

Pagination

297 - 310

Publisher

Inter-Research

Location

Halstenbek, Germany

ISSN

0171-8630

eISSN

1616-1599

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2006, Inter-Research