figshare
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Deakin University and we can't guarantee its availability, quality, security or accept any liability.

Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes

Version 2 2024-06-20, 02:37
Version 1 2024-06-06, 04:50
journal contribution
posted on 2024-06-20, 02:37 authored by Mohamed H Al-Sabri, Neha Behare, Ahmed M Alsehli, Samuel Berkins, Aadeya Arora, Eirini Antoniou, Eleni I Moysiadou, Sowmya Anantha-Krishnan, Patricia D Cosmen, Johanna Vikner, Thiago C Moulin, Nourhene Ammar, Hadi Boukhatmi, Laura E Clemensson, Mathias Rask-Andersen, Jessica Mwinyi, Michael J Williams, Robert Fredriksson, Helgi B Schiöth
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.

History

Journal

Cells

Volume

11

Article number

3528

Pagination

1-35

Location

Basel, Switzerland

ISSN

2073-4409

eISSN

2073-4409

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

22

Publisher

MDPI