figshare
Browse
am1c22396_si_001.pdf (737.32 kB)

Self-Assembled Donor–Acceptor Dyad Molecules Stabilize the Heterojunction of Inverted Perovskite Solar Cells and Modules

Download (737.32 kB)
journal contribution
posted on 2022-01-25, 19:36 authored by Haoran Liu, Kangrong Yan, Jack Rao, Zeng Chen, Benfang Niu, Yanchun Huang, Huanxin Ju, Buyi Yan, Jizhong Yao, Haiming Zhu, Hongzheng Chen, Chang-Zhi Li
The heterointerface between a semiconducting metal oxide and a perovskite critically impacts on the overall performance of perovskite solar cells (PVSCs). Herein, we report a feasible yet effective strategy to suppress the interfacial reaction between nickel oxide and the perovskite via chemical passivation with self-assembled dyad molecules, which leads to the simultaneous improvement of the power conversion efficiencies (PCEs) and operational lifetimes of inverted PVSCs. As a result, inverted PVSCs consisting of simple methylammonium iodide perovskites have achieved an excellent PCE of 20.94% and decent photostability with 93% of the initial value after 600 h of 1 sun equivalent illumination. Moreover, this strategy can be readily translated into slot-die fabrication of perovskite modules, achieving a high PCE of 14.90% with an area of 19.16 cm2 (no shade in the interconnecting area) and a geometrical fill factor of 93%. Overall, this work provides an effective strategy to stabilize the vulnerable heterointerface in PVSCs.

History