figshare
Browse
pbio.3001455.s007.pdf (265.45 kB)

Related to Fig 6.

Download (265.45 kB)
journal contribution
posted on 2021-11-08, 18:42 authored by Francisco J. Martínez-Morcillo, Joaquín Cantón-Sandoval, Francisco J. Martínez-Navarro, Isabel Cabas, Idoya Martínez-Vicente, Joy Armistead, Julia Hatzold, Azucena López-Muñoz, Teresa Martínez-Menchón, Raúl Corbalán-Vélez, Jesús Lacal, Matthias Hammerschmidt, José C. García-Borrón, Alfonsa García-Ayala, María L. Cayuela, Ana B. Pérez-Oliva, Diana García-Moreno, Victoriano Mulero

NAD+and PAR metabolic pathways. NAM, NMN, and NAD+ can be taken up by specific transporters. NAD+ biosynthetic pathways generate NAD+ from different precursors, de novo pathway employs dietary Trp or alternatively quinolinic acid (QA), NAD+ Salvage pathway mainly uses NAM but NMN and NR can also act as precursors. However, Preiss–Handler pathway utilizes NA. NAD+ is consumed by CD38 yielding NAM and ADPR or cADPR. NNMT also reduces NAD+ pool mediating the reaction between NAM and SAM to produce N-methylnicotinamide (1-MNA) and SAH. Finally, PARP1 synthesizes PAR by using NAD+ as a cofactor. PAR is degraded to ADPR mediated by different PAR hydrolases which cleave specific chemical linkages (exo- or endoglycosidically). Metabolic intermediates: NFK, NAAD, and NAMN. NAD+ transporter: CX43. ADPR, adenosine diphosphoribose; caDPR, cyclic ADPR; CX43, connexin 43; NA, nicotinic acid; NAAD, nicotinic acid adenine dinucleotide; NAD+, nicotinamide adenine dinucleotide; NAM, nicotinamide; NAMN, nicotinic acid mononucleotide; NFK, N-formylkynurenine; NMN, nicotinamide mononucleotide; NR, nicotinamide riboside; PAR, poly(ADP-ribose); SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; Trp, tryptophan.

(PDF)

History