figshare
Browse
FACW_GEOL_2011_1365246X_Lee_Chen_Jordan_Wang.pdf (1.52 MB)

Rapid Full-Wave Centroid Moment Tensor (CMT) Inversion in a Three-Dimensional Earth Structure Model for Earthquakes in Southern California

Download (1.52 MB)
Version 3 2021-11-15, 21:38
Version 2 2021-11-13, 03:04
Version 1 2021-02-01, 16:05
journal contribution
posted on 2021-11-15, 21:38 authored by En Jui Lee, Po Chen, Thomas H. Jordan, L. Wang
A central problem of seismology is the inversion of regional waveform data for models of earthquake sources. In regions such as Southern California, preliminary 3-D earth structure models are already available, and efficient numerical methods have been developed for 3-D anelastic wave-propagation simulations. We describe an automated procedure that utilizes these capabilities to derive centroid moment tensors (CMTs). The procedure relies on the use of receiver-side Green's tensors (RGTs), which comprise the spatial-temporal displacements produced by the three orthogonal unit impulsive point forces acting at the receivers. We have constructed a RGT database for 219 broad-band stations in Southern California using a tomographically improved version of the 3-D SCEC Community Velocity Model Version 4.0 (CVM4) and a staggered-grid finite-difference code. Finite-difference synthetic seismograms for any earthquake in our modelling volume can be simply calculated by extracting a small, source-centred volume from the RGT database and applying the reciprocity principle. The partial derivatives needed for the CMT inversion can be generated in the same way. We have developed an automated algorithm that combines a grid-search for suitable focal mechanisms and hypocentre locations with a Gauss-Newton optimization that further refines the grid-search results. Using this algorithm, we have determined CMT solutions for 165 small to medium-sized earthquakes in Southern California. Preliminary comparison with the CMT solutions provided by the Southern California Seismic Network (SCSN) shows that our solutions generally provide better fit to the observed waveforms. When applied to a large number of earthquakes, our algorithm may provide a more robust CMT catalogue for earthquakes in Southern California.

History

ISO

eng

Language

English

Publisher

University of Wyoming. Libraries

Journal title

Geophysical Journal International

Collection

Faculty Publication - Geology & Geophysics

Department

  • Library Sciences - LIBS

Usage metrics

    Geology & Geophysics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC