figshare
Browse
ac1c03616_si_001.pdf (1.59 MB)

Radioiodinated 4‑(p‑Iodophenyl) Butanoic Acid-Modified Estradiol Derivative for ER Targeting SPECT Imaging

Download (1.59 MB)
journal contribution
posted on 2021-10-06, 14:15 authored by Duo Xu, Xiaoru Lin, Xinying Zeng, Xuejun Wen, Jingchao Li, Yesen Li, Jinxiong Huang, Xiaoyuan Chen, Zhide Guo, Xianzhong Zhang
Overexpression of estrogen receptors (ERs) is one of the important characteristics of most breast cancers. We aim to develop a new type of ER-specific radioiodine-labeled estrogen derivative ([131I]­IPBA-EE), which was modified with an albumin-specific ligand 4-(p-iodophenyl) butyric acid (IPBA) to improve the metabolic stability and enhance the ER-targeting ability of estrogen. [131I]­IPBA-EE can effectively bind to albumin in vitro, and its dissociation constant (Kd = 0.31 μM) is similar to IPBA (Kd = 0.30 μM). The uptake of [131I]­IPBA-EE in ER-positive MCF-7 cells (41.81 ± 3.41%) was significantly higher than that in ER-negative MDA-MB-231 cells (8.78 ± 2.37%, ***P < 0.0005) and could be significantly blocked (3.92 ± 0.35%, ***P < 0.0005). The uptakes of [131I]­IPBA-EE in rat uterus and ovaries were 5.66 ± 0.34% ID/g and 5.71 ± 2.77% ID/g, respectively, at 1 h p.i., and these uptakes could be blocked by estradiol (uterus: 2.81 ± 0.41% ID/g, *P < 0.05; ovarian: 3.02 ± 0.08% ID/g, *P < 0.05). SPECT/CT imaging showed that ER-positive MCF-7 tumor uptake of [131I]­IPBA-EE reached to 6.07 ± 0.20% ID/g at 7 h p.i., which was significantly higher than that of ER-negative MDA-MB-231 tumor (0.87 ± 0.08% ID/g, **P < 0.005) and could be blocked obviously with fulvestrant (1.65 ± 1.56% ID/g, *P < 0.05). In conclusion, a novel radioiodinated estradiol derivative, [131I]­IPBA-EE with albumin-binding property and good metabolic stability, was developed to image the ER in breast cancer. This promising ER-targeted probe has the potential to warrant further preclinical investigations.

History