figshare
Browse
am3c18378_si_001.pdf (1.17 MB)

One Scalable and Stable Metal–Organic Framework for Efficient Separation of CH4/N2 Mixture

Download (1.17 MB)
journal contribution
posted on 2024-02-01, 20:03 authored by Pengtao Guo, Yunpan Ying, Dahuan Liu
Separating CH4 from coal bed methane is of great importance but challenging. Adsorption-based separation often suffers from low selectivity, poor stability, and difficulty to scale up. Herein, a stable and scalable metal–organic framework [MOF, CoNi(pyz-NH2)] with multiple CH4 binding sites was reported to efficiently separate the CH4/N2 mixture. Due to its suitable pore size and multiple CH4 binding sites, it exhibits excellent CH4/N2 selectivity (16.5) and CH4 uptake (35.9 cm3/g) at 273 K and 1 bar, which is comparable to that of the state-of-the-art MOFs. Theoretical calculations reveal that the high density of open metal sites and polar functional groups in the pores provide strong affinity to CH4 than to N2. Moreover, CoNi(pyz-NH2) displays excellent structural stability and can be scale-up synthesized (22.7 g). This work not only provides an excellent adsorbent but also provides important inspiration for the future design and preparation of porous adsorbents for separations.

History