figshare
Browse
ao3c07810_si_001.pdf (351.04 kB)

OH-Impregnated Household Bleach-Making Sediments for the Catalysis of Waste Cooking Oil Transesterification: Parameter Optimization

Download (351.04 kB)
journal contribution
posted on 2024-01-22, 05:46 authored by Kedir Derbie Mekonnen, Anwar Yimer Yesuf
Industrial and academic societies have been bothered with the generation and subsequent management of residues settled out from household bleach, due to its corrosive properties. Therefore, the aim of this research was to introduce a NaOH-impregnated calcium-based solid catalyst from the aforementioned sediments for waste cooking oil transesterification. To prepare the catalyst (RC-ITB), the wet impregnation technique was followed and successfully characterized via X-ray diffraction (XRD), X-ray fluorescence(XRF), differential scanning calorimetry (DSC), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) methods. The study findings suggested that RC-ITB has a BET surface area of 9.312 m2 g–1 and is largely made up of calcium with its compound forms such as carbonates, hydroxides, and oxides. The evaluation of pH values verified that RC-ITB is more alkaline (i.e., pH = 12.65) relative to its precursor RC (pH = 10.66), largely attributable to OH impregnation. To study the catalytic performance, three numeric factors with three levels of treatment were used, and their influences were analyzed through a response surface approach. Accordingly, the optimal yield of biodiesel was found to be 80.04% at a reaction temperature of 61 ± 2 °C, catalyst weight of 6.33 wt %, and a molar ratio of 23.94. Moreover, FTIR analysis verified that the glycerol part of triglycerides had been replaced with a methoxyl unit. Also, the fuel quality parameters of the FAME product were examined, including density, kinematic viscosity, acid value, density, cetane number, cloud point, saponification value, and pour point; all of these values fall within the ASTM D6751-accepted limits. Thus, the findings showed that the sediments of household bleach production could be a candidate source to explore heterogeneous basic catalysts.

History