figshare
Browse
es3c10030_si_001.pdf (579.31 kB)

Metabolic Profiles and Microbial Synergy Mechanism of Anammox Biomass Enrichment and Membrane Fouling Alleviation in the Anammox Dynamic Membrane Bioreactor

Download (579.31 kB)
journal contribution
posted on 2024-03-15, 14:05 authored by Yijing Zhu, Han Wang, Jia Li, Zhiwei Wang, Yayi Wang
The anammox dynamic membrane bioreactor (DMBR) is promising in applications with enhanced anammox biomass enrichment and fouling alleviation. However, the metabolic mechanism underlying the functional features of anammox sludge and the biofilm membrane is still obscure. We investigated the metabolic networks of anammox sludge and membrane biofilm in the DMBR. The cooperation between anammox and dissimilatory nitrate reduction to ammonium processes favored the robust anammox process in the DMBR. The rapid bacterial growth occurred in the DMBR sludge with 1.33 times higher biomass yield compared to the MBR sludge, linked to the higher activities of lipid metabolism, nucleotide metabolism, and B vitamin-related metabolism of the DMBR sludge. The metabolism of the DMBR biofilm microbial community benefited the fouling alleviation that the abundant fermentative bacteria and their cooperation with the anammox sludge microbial community promoted organics degradation. The intensified degradation of foulants by the DMBR biofilm community was further evidenced by the active carbohydrate metabolism and the upregulated vitamin B intermediates in the biofilms of the DMBR. Our findings provide insights into key metabolic mechanisms for enhanced biomass enrichment and fouling control of the anammox DMBR, guiding manipulations and applications for overcoming anammox biomass loss in the treatment of wastewater under detrimental environmental conditions.

History