figshare
Browse
jz3c03521_si_001.pdf (2.77 MB)

Investigation of Electronic Structures of Triplet States Using Step-Scan Time-Resolved Fourier-Transform Near-Infrared Spectroscopy

Download (2.77 MB)
journal contribution
posted on 2024-01-19, 17:49 authored by Chia Chun Wu, Yu-Xiang Tsai, Li-Kang Chu, I-Chia Chen
Triplet transitions of light-emitting materials, including rose bengal, tris(2-phenylpyridine)iridium(III) [Ir(ppy)3], tris(1-phenylisoquinoline)iridium(III) [Ir(piq)3], and bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic), were studied using step-scan time-resolved Fourier-transform near-infrared spectroscopy. The samples were excited to their singlet excited states by a 355 nm laser and then underwent efficient conversions/crossings to their triplet manifolds. For rose bengal, a transient absorption band appeared at 9400 cm–1, attributed to the T3 ← T1 transition based on the corresponding time evolution and the theoretical calculations. For Ir(ppy)3, Ir(piq)3, and FIrpic, the most intense bands were observed at 7700, 7500, and 7500 cm–1 and assigned to T7 ← T1, T6 ← T1, and T6 ← T1 transitions, respectively. For Ir(ppy)3, the most intense band involved transitions between different triplet metal-to-ligand charge transfer (3MLCT) states, while for Ir(piq)3 and FIrpic, they involved a metal center to 3MLCT transition. These T1 states were assigned to 3MLCT.

History