figshare
Browse
am3c14213_si_001.pdf (1.07 MB)

Integration of Magnetic-Field-Directed Self-Assembly-Based Cell Culture and Biosensing Platform for Improving hPSCs-Derived Neurons and Quantitative Detection of Neurotransmitter

Download (1.07 MB)
journal contribution
posted on 2023-12-08, 13:34 authored by Yufan Zhang, Fan Cao, Min Xu, Xinrui Li, Mengdan Tao, Shanshan Wu, Wei Xu, Yan Liu, Wanying Zhu
Despite the fact that human neural cell models have played significant roles in both research and cell replacement therapies for neurological diseases, the existing techniques for obtaining neurons from human pluripotent stem cells (hPSCs) are arduous and intricate. Additionally, the evaluation of neuron quality in the natural environment remains deficient. Consequently, we have developed a comprehensive platform utilizing magnetic-field-directed self-assembly (MDSA) of MXenes@Fe3O4 (M/F) nanocomposites. This platform facilitates the cultivation and in situ analysis of differentiated dopaminergic (DA) neurons. Our results showed that the introduction of M/F enhances neurite outgrowth and leads to the development of more intricate ramifications. Moreover, with the increase of magnetic field intensity, neurite outgrowth is further enhanced, and the proportion of differentiated mature neurons from hPSCs increases. This suggests that our platform promotes the maturation of neurons, emphasizing the crucial role of biophysical cues in expediting the differentiation process. The homogenization platform formed by MDSA of M/F nanocomposites exhibits high conductivity, leading to its exceptional performance in the real-time monitoring of the release of dopamine neurotransmitter from hPSC-derived DA neurons. Hence, this platform demonstrates significant potential for monitoring cell quality. In conclusion, our integrated platform, based on MDSA of M/F nanocomposites, offers a reliable and efficient means for the in vitro generation of human neurons with a controllable quality. The as-prepared platform holds potential for enhancing neuronal maturation and ensuring consistent cell quality, showing significant implications for in vitro biological research, disease modeling, and cell replacement therapy.

History