figshare
Browse
christiansen-inferringactivity-2013.pdf (3.29 MB)

Inferring activity budgets in wild animals to estimate the consequences of disturbances

Download (3.29 MB)
journal contribution
posted on 2013-01-01, 00:00 authored by Fredrik Christiansen, M Rasmussen, D Lusseau
Activity budgets can provide a direct link to an animal's bioenergetic budget and is thus a valuable unit of measure when assessing human-induced nonlethal effects on wildlife conservation status. However, activity budget inference can be challenging for species that are difficult to observe and require multiple observational variables. Here, we assessed whether whalewatching boat interactions could affect the activity budgets of minke whales (Balaenoptera acutorostrata). We used a stepwise modeling approach to quantitatively record, identify, and assign activity states to continuous behavioral time series data, to estimate activity budgets. First, we used multiple behavioral variables, recorded from continuous visual observations of individual animals, to quantitatively identify and define behavioral types. Activity states were then assigned to each sampling unit, using a combination of hidden and observed states. Three activity states were identified: nonfeeding, foraging, and surface feeding (SF). From the resulting time series of activity states, transition probability matrices were estimated using first-order Markov chains. We then simulated time series of activity states, using Monte Carlo methods based on the transition probability matrices, to obtain activity budgets, accounting for heterogeneity in state duration. Whalewatching interactions reduced the time whales spend foraging and SF, potentially resulting in an overall decrease in energy intake of 42%. This modeling approach thus provides a means to link short-term behavioral changes resulting from human disturbance to potential long-term bioenergetic consequences in animals. It also provides an analytical framework applicable to other species when direct observations of activity states are not possible.

History

Journal

Behavioral ecology

Volume

24

Issue

6

Pagination

1415 - 1425

Publisher

Oxford University Press

Location

Oxford, England

ISSN

1045-2249

eISSN

1465-7279

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2013, Oxford University Press