figshare
Browse
FACW_GEOL_2012_21699011_Brown_Bradford_Harper_Humphrey_Pfeffer_MosleyThompson.pdf (3.6 MB)

Georadar-Derived Estimates of Firn Density in the Percolation Zone, Western Greenland Ice Sheet

Download (3.6 MB)
Version 3 2021-11-15, 21:38
Version 2 2021-11-13, 03:04
Version 1 2021-02-01, 16:04
journal contribution
posted on 2021-11-15, 21:38 authored by J. Brown, J. Bradford, J. Harper, Neil Humphrey, W. T. Pfeffer, E. Mosley-Thompson
Greater understanding of variations in firn densification is needed to distinguish between dynamic and melt-driven elevation changes on the Greenland ice sheet. This is especially true in Greenland's percolation zone, where firn density profiles are poorly documented because few ice cores are extracted in regions with surface melt. We used georadar to investigate firn density variations with depth along a similar to 70 km transect through a portion of the accumulation area in western Greenland that partially melts. We estimated electromagnetic wave velocity by inverting reflection traveltimes picked from common midpoint gathers. We followed a procedure designed to find the simplest velocity versus depth model that describes the data within estimated uncertainty. On the basis of the velocities, we estimated 13 depth-density profiles of the upper 80 m using a petrophysical model based on the complex refractive index method equation. At the highest elevation site, our density profile is consistent with nearby core data acquired in the same year. Our profiles at the six highest elevation sites match an empirically based densification model for dry firn, indicating relatively minor amounts of water infiltration and densification by melt and refreeze in this higher region of the percolation zone. At the four lowest elevation sites our profiles reach ice densities at substantially shallower depths, implying considerable meltwater infiltration and ice layer development in this lower region of the percolation zone. The separation between these two regions is 8 km and spans 60 m of elevation, which suggests that the balance between dry-firn and melt-induced densification processes is sensitive to minor changes in melt.

History

ISO

eng

Language

English

Publisher

University of Wyoming. Libraries

Journal title

Journal of Geophysical Research-Earth Surface

Collection

Faculty Publication - Geology & Geophysics

Department

  • Library Sciences - LIBS

Usage metrics

    Geology & Geophysics

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC