figshare
Browse
nl3c03160_si_001.pdf (4.34 MB)

Ferroelectric Domain and Switching Dynamics in Curved In2Se3: First-Principles and Deep Learning Molecular Dynamics Simulations

Download (4.34 MB)
journal contribution
posted on 2023-11-15, 11:03 authored by Dongyu Bai, Yihan Nie, Jing Shang, Junxian Liu, Minghao Liu, Yang Yang, Haifei Zhan, Liangzhi Kou, Yuantong Gu
Despite its prevalence in experiments, the influence of complex strain on material properties remains understudied due to the lack of effective simulation methods. Here, the effects of bending, rippling, and bubbling on the ferroelectric domains are investigated in an In2Se3 monolayer by density functional theory and deep learning molecular dynamics simulations. Since the ferroelectric switching barrier can be increased (decreased) by tensile (compressive) strain, automatic polarization reversal occurs in α-In2Se3 with a strain gradient when it is subjected to bending, rippling, or bubbling deformations to create localized ferroelectric domains with varying sizes. The switching dynamics depends on the magnitude of curvature and temperature, following an Arrhenius-style relationship. This study not only provides a promising solution for cross-scale studies using deep learning but also reveals the potential to manipulate local polarization in ferroelectric materials through strain engineering.

History