figshare
Browse
jp808275z_si_001.pdf (100.52 kB)

Energy-Level and Molecular Engineering of Organic D-π-A Sensitizers in Dye-Sensitized Solar Cells

Download (100.52 kB)
journal contribution
posted on 2008-12-11, 00:00 authored by Mingfei Xu, Renzhi Li, Nuttapol Pootrakulchote, Dong Shi, Jin Guo, Zhihui Yi, Shaik M. Zakeeruddin, Michael Grätzel, Peng Wang
A series of organic D-π-A sensitizers composed of different triarylamine donors in conjugation with the thienothiophene unit and cyanoacrylic acid as an acceptor has been synthesized at a moderate yield. Through tuning the number of methoxy substituents on the triphenylamine donor, we have gradually red-shifted the absorption of sensitizers to enhance device efficiencies. Further molecular engineering by the substitution of two hexyloxy chains in place of the methoxy groups allows fabricating a solvent-free dye-sensitized solar cell with a power conversion efficiency of 7.05% measured under the air mass 1.5 global sunlight. Time- and frequency-domain photoelectrical techniques have been employed to scrutinize the aliphatic chain effects with a close inspection on effective electron lifetime, diffusion coefficient, and diffusion length.

History