figshare
Browse
jz3c02800_si_001.pdf (615.14 kB)

Electrostatic Potential of Functional Cations as a Predictor of Hydroxide Diffusion Pathways in Nanoconfined Environments of Anion Exchange Membranes

Download (615.14 kB)
journal contribution
posted on 2024-01-05, 14:07 authored by Tamar Zelovich, Dario R. Dekel, Mark E. Tuckerman
Nanoconfined anion exchange membranes (AEMs) play a vital role in emerging electrochemical technologies. The ability to control dominant hydroxide diffusion pathways is an important goal in the design of nanoconfined AEMs. Such control can shorten hydroxide transport pathways between electrodes, reduce transport resistance, and enhance device performance. In this work, we propose an electrostatic potential (ESP) approach to explore the effect of the polymer electrolyte cation spacing on hydroxide diffusion pathways from a molecular perspective. By exploring cation ESP energy surfaces and validating outcomes through prior ab initio molecular dynamics simulations of nanoconfined AEMs, we find that we can achieve control over preferred hydroxide diffusion pathways by adjusting the cation spacing. The results presented in this work provide a unique and straightforward approach to predict preferential hydroxide diffusion pathways, enabling efficient design of highly conductive nanoconfined AEM materials for electrochemical technologies.

History