figshare
Browse
ja2c10784_si_001.pdf (1.41 MB)

E3-Specific Degrader Discovery by Dynamic Tracing of Substrate Receptor Abundance

Download (1.41 MB)
journal contribution
posted on 2023-01-05, 16:34 authored by Alexander Hanzl, Eleonora Barone, Sophie Bauer, Hong Yue, Radosław P. Nowak, Elisa Hahn, Eugenia V. Pankevich, Anna Koren, Stefan Kubicek, Eric S. Fischer, Georg E. Winter
Targeted protein degradation (TPD) is a new pharmacology based on small-molecule degraders that induce proximity between a protein of interest (POI) and an E3 ubiquitin ligase. Of the approximately 600 E3s encoded in the human genome, only around 2% can be co-opted with degraders. This underrepresentation is caused by a paucity of discovery approaches to identify degraders for defined E3s. This hampers a rational expansion of the druggable proteome and stymies critical advancements in the field, such as tissue- and cell-specific degradation. Here, we focus on dynamic NEDD8 conjugation, a post-translational, regulatory circuit that controls the activity of 250 cullin RING E3 ligases (CRLs). Leveraging this regulatory layer enabled us to develop a scalable assay to identify compounds that alter the interactome of an E3 of interest by tracing their abundance after pharmacologically induced auto-degradation. Initial validation studies are performed for CRBN and VHL, but proteomics studies indicate broad applicability for many CRLs. Among amenable ligases, we select CRLDCAF15 for a proof-of-concept screen, leading to the identification of a novel DCAF15-dependent molecular glue degrader inducing the degradation of RBM23 and RBM39. Together, this strategy empowers the scalable identification of degraders specific to a ligase of interest.

History