figshare
Browse
am3c15851_si_001.pdf (1.01 MB)

Dual-Mode Lateral Flow Immunoassay Based on “Pompon Mum”-Like Fe3O4@MoS2@Pt Nanotags for Sensitive Detection of Viral Pathogens

Download (1.01 MB)
journal contribution
posted on 2024-02-23, 04:29 authored by Meimei Xu, Shuai Zhao, Chenglong Lin, Yanyan Li, Weida Zhang, Yusi Peng, Rui Xiao, Zhengren Huang, Yong Yang
Lateral flow immunoassay (LFIA) has been widely used for the early diagnosis of diseases. However, conventional colorimetric LFIA possesses limited sensitivity, and the single-mode readout signal is easily affected by the external environment, leading to insufficient accuracy. Herein, multifunctional Fe3O4@MoS2@Pt nanotags with a unique “pompon mum”-like structure were triumphantly prepared, exhibiting excellent peroxidase (POD)-like activity, photothermal properties, and magnetic separation capability. Furthermore, the Fe3O4@MoS2@Pt nanotags were used to establish dual-mode LFIA (dLFIA) for the first time, enabling the catalytic colorimetric and photothermal dual-mode detection of severe acute respiratory syndrome coronavirus 2 nucleocapsid protein (SARS-CoV-2 NP) and influenza A (H1N1). The calculated limits of detection (cLODs) of SARS-CoV-2 NP and H1N1 were 80 and 20 ng/mL in catalytic colorimetric mode and 10 and 8 ng/mL in photothermal mode, respectively, demonstrating about 100 times more sensitive than the commercial colloidal Au-LFIA strips (1 ng/mL for SARS-CoV-2 NP; 1 μg/mL for H1N1). The recovery rates of dLFIA in simulated nose swab samples were 95.2–103.8% with a coefficient of variance of 2.3–10.1%. These results indicated that the proposed dLFIA platform showed great potential for the rapid diagnosis of respiratory viruses.

History