figshare
Browse
cm8b05017_si_001.pdf (2.85 MB)

Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4

Download (2.85 MB)
journal contribution
posted on 2019-04-02, 17:48 authored by Alexander Zeugner, Frederik Nietschke, Anja U. B. Wolter, Sebastian Gaß, Raphael C. Vidal, Thiago R. F. Peixoto, Darius Pohl, Christine Damm, Axel Lubk, Richard Hentrich, Simon K. Moser, Celso Fornari, Chul Hee Min, Sonja Schatz, Katharina Kißner, Maximilian Ünzelmann, Martin Kaiser, Francesco Scaravaggi, Bernd Rellinghaus, Kornelius Nielsch, Christian Hess, Bernd Büchner, Friedrich Reinert, Hendrik Bentmann, Oliver Oeckler, Thomas Doert, Michael Ruck, Anna Isaeva
High-quality single crystals of MnBi2Te4 are grown for the first time by slow cooling within a narrow range between the melting points of Bi2Te3 (586 °C) and MnBi2Te4 (600 °C). Single-crystal X-ray diffraction and electron microscopy reveal ubiquitous antisite defects in both cation sites and, possibly, Mn vacancies (Mn0.85(3)Bi2.10(3)Te4). Thermochemical studies complemented with high-temperature X-ray diffraction establish a limited high-temperature range of phase stability and metastability at room temperature. Nevertheless, the synthesis of MnBi2Te4 can be scaled-up as powders can be obtained at subsolidus temperatures and quenched at room temperature. Bulk samples exhibit long-range antiferromagnetic ordering below 24 K. The Mn­(II) out-of-plane magnetic state is confirmed by the magnetization, X-ray photoemission, X-ray absorption, and linear dichroism measurements. The compound shows a metallic type of resistivity in the range 4.5–300 K and is an n-type conductor that reaches a thermoelectric figure of merit up to ZT = 0.17. Angle-resolved photoemission experiments show a surface state forming a gapped Dirac cone, thus strengthening MnBi2Te4 as a promising candidate for the intrinsic magnetic topological insulator, in accordance with theoretical predictions. The developed synthetic protocols enable further experimental studies of a crossover between magnetic ordering and nontrivial topology in bulk MnBi2Te4.

History