figshare
Browse
gbif_a_1974847_sm0924.pdf (568.28 kB)

CFD-based prediction of initial microalgal adhesion to solid surfaces using force balances

Download (568.28 kB)
journal contribution
posted on 2021-09-20, 03:20 authored by S. Kichouh-Aiadi, A. Sánchez-Mirón, J. J. Gallardo-Rodríguez, Y. Soriano‐Jerez, M. C. Cerón-García, F. García-Camacho, E. Molina-Grima

Adhesion of microalgal cells to photobioreactor walls reduces productivity resulting in significant economic losses. The physico-chemical surface properties and the fluid dynamics present in the photobioreactor during cultivation are relevant. However, to date, no multiphysical model has been able to predict biofouling formation in these systems. In this work, to model the microalgal adhesion, a Computational Fluid Dynamic simulation was performed using a Eulerian-Lagrangian particle-tracking model. The adhesion criterion was based on the balance of forces and moments included in the XDLVO model. A cell suspension of the marine microalga Nannochloropsis gaditana was fed into a commercial flow cell composed of poly-methyl-methacrylate coupons for validation. Overall, the simulated adhesion criterion qualitatively predicted the initial distribution of adhered cells on the coupons. In conclusion, the combined Computational Fluid Dynamics-Discrete Phase Model (CFD-DPM) approach can be used to overcome the challenge of predicting microalgal cell adhesion in photobioreactors.

Funding

This research was funded by grants RTI2018-101891-B-100, PID2019-109476RB-C22, and PPUENTE2020/013.

History