figshare
Browse
ic3c03654_si_001.pdf (2 MB)

Amine-Based MOF for Precious Metal Remediation

Download (2 MB)
journal contribution
posted on 2024-01-03, 08:30 authored by Jade Nadine S. Ang, Ali Y. Chahine, Thomas J. Raeber, Stuart R. Batten, David R. Turner
Due to the continuous growth rate of the electronic industry, hi-tech companies depend on mining and extracting precious metals to meet the public demand. The high turnover of modern devices generates an alarming amount of electronic waste (e-waste), which contains more precious metals than mined ores and therefore needs efficient recovery procedures. A highly stable homopiperazine-derived Cd-MOF, poly-[Cd(H2L)]·9H2O, with a protonated amine ligand core, exists as a twofold interpenetrated 3D framework with 1D channels into which the N+–H bond is directed. The geometry of these channels appears to be suitable to host square planar metalate complexes. Under acidic conditions, [MCl4]x anions containing Au, Cu, Ni, and Pt, representing common components of e-waste under extraction conditions, were tested for capture and recovery. Cd-MOF exhibits remarkable selectivity and uptake performance toward Au with an adsorbent capacity of 25 mg g–1ads and shows a marked selectivity for Au over Cu in competitive experiments. The adsorption mechanism of Au appears to be predominantly physical adsorption at the surface of the material.

History