figshare
Browse
jm1c00665_si_001.pdf (1.62 MB)

3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV‑2 Agents

Download (1.62 MB)
journal contribution
posted on 2021-07-27, 14:37 authored by Sho Konno, Kiyotaka Kobayashi, Miki Senda, Yuta Funai, Yuta Seki, Ikumi Tamai, Laura Schäkel, Kyousuke Sakata, Thanigaimalai Pillaiyar, Akihiro Taguchi, Atsuhiko Taniguchi, Michael Gütschow, Christa E. Müller, Koh Takeuchi, Mikako Hirohama, Atsushi Kawaguchi, Masaki Kojima, Toshiya Senda, Yoshiyuki Shirasaka, Wataru Kamitani, Yoshio Hayashi
The novel coronavirus, SARS-CoV-2, has been identified as the causative agent for the current coronavirus disease (COVID-19) pandemic. 3CL protease (3CLpro) plays a pivotal role in the processing of viral polyproteins. We report peptidomimetic compounds with a unique benzothiazolyl ketone as a warhead group, which display potent activity against SARS-CoV-2 3CLpro. The most potent inhibitor YH-53 can strongly block the SARS-CoV-2 replication. X-ray structural analysis revealed that YH-53 establishes multiple hydrogen bond interactions with backbone amino acids and a covalent bond with the active site of 3CLpro. Further results from computational and experimental studies, including an in vitro absorption, distribution, metabolism, and excretion profile, in vivo pharmacokinetics, and metabolic analysis of YH-53 suggest that it has a high potential as a lead candidate to compete with COVID-19.

History