figshare
Browse
tbsd_a_1135298_sm7288.pdf (807.69 kB)

Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation

Download (807.69 kB)
journal contribution
posted on 2016-04-04, 15:48 authored by Rajan Kumar Pandey, Bajarang Vasant Kumbhar, Shubham Srivastava, Ruchi Malik, Shyam Sundar, Ambarish Kunwar, Vijay Kumar Prajapati

Visceral leishmaniasis affects people from 70 countries worldwide, mostly from Indian, African and south American continent. The increasing resistance to antimonial, miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an antileishmanial drug with excellent efficacy and safety profile. In this study we have docked series of febrifugine analogues (n = 8813) against trypanothione reductase in three sequential docking modes. Extra precision docking resulted into 108 ligands showing better docking score as compared to two reference ligand. Furthermore, 108 febrifugine analogues and reference inhibitor clomipramine were subjected to ADMET, QikProp and molecular mechanics, the generalized born model and solvent accessibility study to ensure the toxicity caused by compounds and binding-free energy, respectively. Two best ligands (FFG7 and FFG2) qualifying above screening parameters were further subjected to molecular dynamics simulation. Conducting these studies, here we confirmed that 6-chloro-3-[3-(3-hydroxy-2-piperidyl)-2-oxo-propyl]-7-(4-pyridyl) quinazolin-4-one can be potential drug candidate to fight against Leishmania donovani parasites.

History