figshare
Browse
am3c16991_si_001.pdf (521.45 kB)

1T-VS2@V2O3 Synergistic Nanoarchitecture-Based Lamellar Clusters as the High Conductivity Cathodes of Thermal Batteries

Download (521.45 kB)
journal contribution
posted on 2024-02-05, 21:29 authored by Xin-ya Bu, Yan-li Zhu, Cong-jie Wang, Wei Li, Yu Xia, Yong Zhao
Thermal batteries are solid-state, thermally activated batteries with long storage times and high reliability. FeS2 is used as a cathode material commonly, but the high internal resistance and low voltage platform limit the improvement of battery performance. Herein, the 1T-phase vanadium disulfide (VS2) is prepared via the scalable hydrothermal method and applied to thermal battery cathode materials for the first time. 1T-VS2 lamellar flower clusters have high electronic conductivity (1.583 S cm–1) at room temperature, which is 75 times higher than FeS2 (0.021 S cm–1). Mechanism analysis shows that 1T-VS2@V2O3 can be formed based on the part of 1T-VS2 being oxidized to V2O3 at the discharge temperature. Benefiting from the synergistic effect of vanadium sulfide and vanadium oxide as a cathode for thermal batteries enhanced specific capacity (292.4 mA h g–1) and mass energy density (572.5 W h kg–1) when cutoff voltage is 1 V. Additionally, the discharge results indicate that the cells utilizing 1T-VS2 cathodes provided a higher voltage platform of 2.11 V than 1.84 V for FeS2. This impressive work can offer a good strategy for boosting cathode materials for a high-performance thermal battery.

History