figshare
Browse
ixen_a_1923859_sm1585.pdf (581.46 kB)

Absorption, metabolism and excretion of pictilisib, a potent pan-class I phosphatidylinositol-3-Kinase (PI3K) inhibitor, in rats, dogs, and humans

Download (581.46 kB)
journal contribution
posted on 2021-05-24, 11:23 authored by Qin Yue, S. Cyrus Khojasteh, Sungjoon Cho, Shuguang Ma, Teresa Mulder, John Chen, Jodie Pang, Xiao Ding, Alan Deese, Jackson D. Pellet, Nicholas Siebers, Lori Joas, Laurent Salphati, Joseph A. Ware

The absorption, metabolism and excretion of pictilisib, a selective small molecule inhibitor of class 1 A phosphoinositide 3-kinase (PI3K), was characterized following a single oral administration of [14C]pictilisib in rats, dogs and humans at the target doses of 30 mg/kg, 5 mg/kg and 60 mg, respectively.

Pictilisib was rapidly absorbed with Tmax less than 2 h across species. In systemic circulation, pictilisib represented the predominant total radioactivity greater than 86.6% in all species.

Total pictilisib and related radioactivity was recovered from urine and faeces in rats, dogs, and human at 98%, 80% and 95%, respectively, with less than 2% excreted in urine and the rest excreted into faeces.

In rat and dog, more than 40% of drug-related radioactivity was excreted into the bile suggesting biliary excretion was the major route of excretion. Unchanged pictilisib was a minor component in rat and dog bile. The major metabolite in bile was O-glucuronide of oxidation on indazole moiety (M20, 21% of the dose) in rats and an oxidative piperazinyl ring-opened metabolite M7 (10.8% of the dose) in dogs.

Oxidative glutathione (GSH) conjugates (M18, M19) were novel metabolites detected in rat bile, suggesting the potential generation of reactive intermediates from pictilisib. The structure of M18 was further confirmed by NMR to be a N-hydroxylated and GSH conjugated metabolite on the moiety of the indazole ring.

The absorption, metabolism and excretion of pictilisib, a selective small molecule inhibitor of class 1 A phosphoinositide 3-kinase (PI3K), was characterized following a single oral administration of [14C]pictilisib in rats, dogs and humans at the target doses of 30 mg/kg, 5 mg/kg and 60 mg, respectively.

Pictilisib was rapidly absorbed with Tmax less than 2 h across species. In systemic circulation, pictilisib represented the predominant total radioactivity greater than 86.6% in all species.

Total pictilisib and related radioactivity was recovered from urine and faeces in rats, dogs, and human at 98%, 80% and 95%, respectively, with less than 2% excreted in urine and the rest excreted into faeces.

In rat and dog, more than 40% of drug-related radioactivity was excreted into the bile suggesting biliary excretion was the major route of excretion. Unchanged pictilisib was a minor component in rat and dog bile. The major metabolite in bile was O-glucuronide of oxidation on indazole moiety (M20, 21% of the dose) in rats and an oxidative piperazinyl ring-opened metabolite M7 (10.8% of the dose) in dogs.

Oxidative glutathione (GSH) conjugates (M18, M19) were novel metabolites detected in rat bile, suggesting the potential generation of reactive intermediates from pictilisib. The structure of M18 was further confirmed by NMR to be a N-hydroxylated and GSH conjugated metabolite on the moiety of the indazole ring.

History