Data_Sheet_1_Scale-Free Coupled Dynamics in Brain Networks Captured by Bivariate Focus-Based Multifractal Analysis.PDF
While most connectivity studies investigate functional connectivity (FC) in a scale-dependent manner, coupled neural processes may also exhibit broadband dynamics, manifesting as power-law scaling of their measures of interdependence. Here we introduce the bivariate focus-based multifractal (BFMF) analysis as a robust tool for capturing such scale-free relations and use resting-state electroencephalography (EEG) recordings of 12 subjects to demonstrate its performance in reconstructing physiological networks. BFMF was employed to characterize broadband FC between 62 cortical regions in a pairwise manner, with all investigated connections being tested for true bivariate multifractality. EEG channels were also grouped to represent the activity of six resting-state networks (RSNs) in the brain, thus allowing for the analysis of within- and between- RSNs connectivity, separately. Most connections featured true bivariate multifractality, which could be attributed to the genuine scale-free coupling of neural dynamics. Bivariate multifractality showed a characteristic topology over the cortex that was highly concordant among subjects. Long-term autocorrelation was higher in within-RSNs, while the degree of multifractality was generally found stronger in between-RSNs connections. These results offer statistical evidence of the bivariate multifractal nature of functional coupling in the brain and validate BFMF as a robust method to capture such scale-independent coupled dynamics.
History
References
- https://doi.org//10.1016/j.crhy.2019.08.005
- https://doi.org//10.1103/PhysRevE.77.036104
- https://doi.org//10.1016/j.neuroimage.2014.07.045
- https://doi.org//10.1103/PhysRevLett.59.381
- https://doi.org//10.1016/j.physa.2005.03.019
- https://doi.org//10.1016/j.physa.2007.04.120
- https://doi.org//10.1371/journal.pone.0142143
- https://doi.org//10.1016/j.physa.2010.05.025
- https://doi.org//10.1038/ncomms1705
- https://doi.org//10.3389/fphys.2012.00163
- https://doi.org//10.1002/mrm.1910340409
- https://doi.org//10.1038/srep27089
- https://doi.org//10.1088/1742-5468/2010/02/P02015
- https://doi.org//10.1038/nrn2575
- https://doi.org//10.1093/acprof:oso/9780195301069.001.0001
- https://doi.org//10.1016/j.neuroimage.2009.12.011
- https://doi.org//10.1016/j.neuroimage.2007.12.064
- https://doi.org//10.3389/fphys.2012.00186
- https://doi.org//10.1016/j.neuroimage.2014.03.047
- https://doi.org//10.1137/070710111
- https://doi.org//10.1016/B978-012088786-6/50029-50020
- https://doi.org//10.1016/j.jneumeth.2003.10.009
- https://doi.org//10.1016/j.jneumeth.2010.08.027
- https://doi.org//10.1007/s004249900135
- https://doi.org//10.1088/0967-3334/23/1/201
- https://doi.org//10.1152/japplphysiol.00657.2004
- https://doi.org//10.1038/nn.4135
- https://doi.org//10.3389/fphys.2012.00307
- https://doi.org//10.1016/j.clinph.2004.02.028
- https://doi.org//10.1038/jcbfm.1993.4
- https://doi.org//10.3389/fnins.2018.00097
- https://doi.org//10.1016/j.jneumeth.2014.04.020
- https://doi.org//10.1016/S0304-3940(02)01247-1248
- https://doi.org//10.12693/APhysPolA.121.B-34
- https://doi.org//10.1016/j.neuron.2010.04.020
- https://doi.org//10.3389/fnsys.2014.00166
- https://doi.org//10.1002/hbm.22058
- https://doi.org//10.1038/20924
- https://doi.org//10.1209/epl/i1998-00366-363
- https://doi.org//10.1007/978-3-319-03518-5_10
- https://doi.org//10.1016/j.physa.2004.08.016
- https://doi.org//10.1103/PhysRevE.79.041920
- https://doi.org//10.1088/1367-2630/18/10/100201
- https://doi.org//10.1098/rspa.2019.0150
- https://doi.org//10.1016/j.acha.2018.01.004
- https://doi.org//10.1038/srep29780
- https://doi.org//10.1016/S0378-4371(02)01383-1383
- https://doi.org//10.1209/0295-5075/95/68001
- https://doi.org//10.1103/PhysRevE.90.062802
- https://doi.org//10.1103/PhysRevE.92.052815
- https://doi.org//10.1016/j.physa.2004.11.019
- https://doi.org//10.3389/fphys.2020.578537
- https://doi.org//10.1016/j.spl.2009.08.015
- https://doi.org//10.3389/fnins.2018.00513
- https://doi.org//10.1038/s42003-020-0878-874
- https://doi.org//10.1007/978-1-4419-5675-0_17
- https://doi.org//10.1017/S1355617716000060
- https://doi.org//10.1007/BF01129967
- https://doi.org//10.3389/fneur.2019.00325
- https://doi.org//10.1016/j.physa.2014.09.002
- https://doi.org//10.3389/fphys.2018.01072
- https://doi.org//10.1038/s41467-020-15541-15540
- https://doi.org//10.3389/fphys.2017.00533
- https://doi.org//10.1103/PhysRevLett.86.6026
- https://doi.org//10.1103/PhysRevE.89.023305
- https://doi.org//10.1016/j.physa.2014.09.004
- https://doi.org//10.1016/B978-0-12-372560-8.X5000-1
- https://doi.org//10.1103/PhysRevE.84.066118
- https://doi.org//10.1103/PhysRevLett.100.084102
- https://doi.org//10.1523/JNEUROSCI.5990-11.2012
- https://doi.org//10.1016/S0304-3940(97)00192-194
- https://doi.org//10.1007/s00125-019-04976-w
- https://doi.org//10.1016/j.neuroimage.2016.12.061
- https://doi.org//10.1103/PhysRevLett.73.951
- https://doi.org//10.1088/1361-6579/aaa916
- https://doi.org//10.3389/fphys.2018.01704
- https://doi.org//10.1038/s41598-019-49726-49725
- https://doi.org//10.3389/fnsys.2020.00049
- https://doi.org//10.1016/j.physa.2018.05.059
- https://doi.org//10.1016/j.advwatres.2008.09.007
- https://doi.org//10.1016/j.neuroimage.2009.10.003
- https://doi.org//10.1152/jn.00360.2020
- https://doi.org//10.1007/978-1-4612-3784-6_2
- https://doi.org//10.1098/rsta.2012.0191
- https://doi.org//10.1016/j.physa.2011.03.002
- https://doi.org//10.1371/journal.pone.0146845
- https://doi.org//10.1111/j.1749-6632.2010.05888.x
- https://doi.org//10.1038/nrn3801
- https://doi.org//10.1002/hbm.20016
- https://doi.org//10.3389/fnhum.2012.00339
- https://doi.org//10.1152/jn.00338.2011
- https://doi.org//10.1038/s41591-018-0300-7
- https://doi.org//10.1016/j.neuroimage.2017.02.005
- https://doi.org//10.1007/s11065-014-9248-9247
- https://doi.org//10.1016/j.euroneuro.2010.03.008
- https://doi.org//10.1177/1073858413494269
- https://doi.org//10.1142/S0218348X12500259
- https://doi.org//10.1088/1674-1056/21/2/028703
- https://doi.org//10.1002/bbpc.19940980939.
- https://doi.org//10.1016/j.jdiacomp.2014.05.009
- https://doi.org//10.1109/ICASSP.2009.4960233
- https://doi.org//10.3389/fphys.2010.00015
- https://doi.org//10.1088/1741-2560/11/3/035013
- https://doi.org//10.1186/1744-9081-7-30
- https://doi.org//10.1371/journal.pone.0068910
- https://doi.org//10.1214/aos/1013699998
- https://doi.org//10.1016/j.neuroimage.2014.12.020