figshare
Browse
Data_Sheet_1_ΔO2/N2′ as a New Tracer of Marine Net Community Production: Application and Evaluation in the Subarctic Northeast Pacific and Canadian Ar.pdf (1.04 MB)

Data_Sheet_1_ΔO2/N2′ as a New Tracer of Marine Net Community Production: Application and Evaluation in the Subarctic Northeast Pacific and Canadian Arctic Ocean.pdf

Download (1.04 MB)
dataset
posted on 2021-08-02, 05:50 authored by Robert W. Izett, Roberta C. Hamme, Craig McNeil, Cara C. M. Manning, Annie Bourbonnais, Philippe D. Tortell

We compared field measurements of the biological O2 saturation anomalies, ΔO2/Ar and ΔO2/N2, from simultaneous oceanographic deployments of a membrane inlet mass spectrometer and optode/gas tension device (GTD). Data from the Subarctic Northeast Pacific and Canadian Arctic Ocean were used to evaluate ΔO2/N2 as an alternative to ΔO2/Ar for estimates of mixed layer net community production (NCP). We observed strong spatial coherence between ΔO2/Ar and ΔO2/N2, with small offsets resulting from differences in the solubility properties of Ar and N2 and their sensitivity to vertical mixing fluxes. Larger offsets between the two tracers were observed across hydrographic fronts and under elevated sea states, resulting from the differential time-response of the optode and GTD, and from bubble dissolution in the ship’s seawater lines. We used a simple numerical framework to correct for physical sources of divergence between N2 and Ar, deriving the tracer ΔO2/N2′. Over most of our survey regions, ΔO2/N2′ provided a better analog for ΔO2/Ar, and thus more accurate NCP estimates than ΔO2/N2. However, in coastal Arctic waters, ΔO2/N2 and ΔO2/N2′ performed equally well as NCP tracers. On average, mixed layer NCP estimated from ΔO2/Ar and ΔO2/N2′ agreed to within ∼2 mmol O2 m–2 d–1, with offsets typically smaller than other errors in NCP calculations. Our results demonstrate a significant potential to derive NCP from underway O2/N2 measurements across various oceanic regions. Optode/GTD systems could replace mass spectrometers for autonomous NCP derivation under many oceanographic conditions, thereby presenting opportunities to significantly expand global NCP coverage from various underway platforms.

History