figshare
Browse
Data_Sheet_1_A novel promising laccase from the psychrotolerant and halotolerant Antarctic marine Halomonas sp. M68 strain.docx (5.57 MB)

Data_Sheet_1_A novel promising laccase from the psychrotolerant and halotolerant Antarctic marine Halomonas sp. M68 strain.docx

Download (5.57 MB)
dataset
posted on 2023-02-10, 04:46 authored by Melissa Bisaccia, Elisa Binda, Elena Rosini, Gabriella Caruso, Ombretta Dell'Acqua, Maurizio Azzaro, Pasqualina Laganà, Gabriella Tedeschi, Elisa M. Maffioli, Loredano Pollegioni, Flavia Marinelli

Microbial communities inhabiting the Antarctic Ocean show psychrophilic and halophilic adaptations conferring interesting properties to the enzymes they produce, which could be exploited in biotechnology and bioremediation processes. Use of cold- and salt-tolerant enzymes allows to limit costs, reduce contaminations, and minimize pretreatment steps. Here, we report on the screening of 186 morphologically diverse microorganisms isolated from marine biofilms and water samples collected in Terra Nova Bay (Ross Sea, Antarctica) for the identification of new laccase activities. After primary screening, 13.4 and 10.8% of the isolates were identified for the ability to oxidize 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and the dye azure B, respectively. Amongst them, the marine Halomonas sp. strain M68 showed the highest activity. Production of its laccase-like activity increased six-fold when copper was added to culture medium. Enzymatic activity-guided separation coupled with mass spectrometry identified this intracellular laccase-like protein (named Ant laccase) as belonging to the copper resistance system multicopper oxidase family. Ant laccase oxidized ABTS and 2,6-dimethoxy phenol, working better at acidic pHs The enzyme showed a good thermostability, with optimal temperature in the 40–50°C range and maintaining more than 40% of its maximal activity even at 10°C. Furthermore, Ant laccase was salt- and organic solvent-tolerant, paving the way for its use in harsh conditions. To our knowledge, this is the first report concerning the characterization of a thermo- and halo-tolerant laccase isolated from a marine Antarctic bacterium.

History

Usage metrics

    Frontiers in Microbiology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC