Simulation of two-species population growth for the model (1) and model (2).

2010-11-29T01:52:54Z (GMT) by Sylvie Estrela Ivana Gudelj
<p>In the case of model (1) type X and Y cross-feed each other and in the case of model (2) X<sub>c</sub> doesn't cross-feed Y but Y cross-feeds X<sub>c</sub>. Here we plot <i>X</i>(<i>t</i>) solution of (1) (full line) together with <i>X<sub>c</sub></i>(<i>t</i>) solution of (2) (dashed line) with <b>A</b>. <i>r<sub>y</sub></i> = 0.011, <i>r<sub>x</sub></i> = 0.008,  = 0.009, <i>b<sub>xy</sub></i> = <i>b<sub>yx</sub></i> = 0.01; <b>B</b>. <i>r<sub>y</sub> = 0.011</i>, <i>r<sub>x</sub></i> = 0.008,  = 0.009, <i>b<sub>xy</sub></i> = <i>b<sub>yx</sub></i> = 0.001; <b>C</b>. <i>r<sub>y</sub></i> = 0.03, <i>r<sub>x</sub></i> = 0.015,  = 0.025, <i>b<sub>xy</sub></i> = <i>b<sub>yx</sub></i> = 0.01. For both simulations of model (1) and (2) and in all three cases presented here <i>K</i> = 10000, and <i>ε<sub>1</sub></i> = <i>ε<sub>2</sub></i> = 0.01.</p>