Signal-to-noise ratio measured for several microwave powers in comparison to a numerical simulation based on the used measurement parameters and normalized to the measured signal amplitude [18]

<p><strong>Figure 4.</strong> Signal-to-noise ratio measured for several microwave powers in comparison to a numerical simulation based on the used measurement parameters and normalized to the measured signal amplitude [<a href="http://iopscience.iop.org/0953-4075/46/12/125003/article#jpb466735bib18" target="_blank">18</a>]. The given power value is referring to the power inside the target. 7.5 W was finally chosen for the microwave spectroscopic measurements.</p> <p><strong>Abstract</strong></p> <p>In this work, we describe the latest results for the measurements of the hyperfine structure of antiprotonic <sup>3</sup>He. Two out of four measurable super–super-hyperfine (SSHF) transition lines of the (<em>n</em>, <em>L</em>) = (36, 34) state of antiprotonic <sup>3</sup>He were observed. The measured frequencies of the individual transitions are 11.125 48(08) GHz and 11.157 93(13) GHz, with the increased precisions of about 43% and 25%, respectively, compared to our first measurements with antiprotonic <sup>3</sup>He (Friedreich <em>et al</em> 2011 <em>Phys. Lett.</em> B <strong>700</strong> 1–6). They are less than 0.5 MHz higher with respect to the most recent theoretical values, still within their estimated errors. Although the experimental uncertainty for the difference of 0.032 45(15) GHz between these frequencies is large as compared to that of theory, its measured value also agrees with theoretical calculations. The rates for collisions between antiprotonic helium and helium atoms have been assessed through comparison with simulations, resulting in an elastic collision rate of γ<sub><em>e</em></sub> = 3.41 ± 0.62 MHz and an inelastic collision rate of γ<sub><em>i</em></sub> = 0.51 ± 0.07 MHz.</p>