figshare
Browse
Fig 1.TIF (1.05 MB)

Hypothesized regulation of the Strongyloides stercoralis life cycle by the nuclear hormone receptor DAF-12.

Download (0 kB)
figure
posted on 2016-01-05, 14:56 authored by Mennatallah M. Y. Albarqi, Jonathan D. Stoltzfus, Adeiye A. Pilgrim, Thomas J. Nolan, Zhu Wang, Steven A. Kliewer, David J. Mangelsdorf, James B. Lok

The S. stercoralis parasitic female (P Female) produces larval progeny by mitotic parthenogenesis, and these progeny have several possible developmental fates. A female post-parasitic first-stage larva (PP L1) can either precociously develop inside the host to an autoinfective third-stage larva (L3a), which develops to a second-generation parasitic female, or be passed in the feces to develop outside the host by one of two routes: a homogonic route directly to a developmentally arrested infectious third-stage larva (iL3), which is favored at host-like temperatures (e.g., 37°C), or a heterogonic route to a free-living adult female (FL Female), which is favored at lower temperatures (e.g., 22°C). We hypothesize that this developmental checkpoint is regulated by dafachronic acid ligands for the nuclear hormone receptor Ss-DAF-12, with liganded Ss-DAF-12 favoring heterogonic development. Larval progeny of the single free-living generation of females and males invariably form iL3, and this developmental arrest is hypothesized to be governed by the absence of Ss-DAF-12 signaling. Once inside a host, the third-stage larva resumes development and feeding, resulting in a form designated the L3+. We hypothesize that resumption of development by iL3 entering the host and maturation to the P Female requires an increase in signaling by Ss-DAF-12, stimulated by increased biosynthesis of its steroid ligand.

History