figshare
Browse
2017HartleyRAPhD.pdf (3.41 MB)

Using Quantitative Computed Tomography to Provide Important and Novel Insights into Airway Remodelling in Asthma and COPD

Download (3.41 MB)
thesis
posted on 2017-06-26, 14:44 authored by Ruth Angela Hartley
Over the past 20 years, the technology behind Computed Tomography (CT) scan acquisition and image analysis has improved dramatically. The potential for CT to be a non-invasive method to probe the lungs has long been recognised, but there remain large gaps in our knowledge of how changes in airway structure influences airway physiology and clinical outcomes. In this thesis I examine quantitative CT (QCT) measures of airway remodelling between asthma, COPD and healthy controls, its relationship with immunohistology and its application in stratified medicine intervention studies. First I present one of the largest studies to date comparing QCT parameters in asthma, COPD and healthy controls. It confirms the heterogeneity within both diseases. However there are still distinct structural differences observed within each cohort, with striking differences seen within and between the cohorts when grouped by airflow limitation. I then present one of the largest studies to date looking at QCT measures and bronchial biopsies. This shows that changes seen on QCT correlate with typical remodelling parameters such as percentage airway smooth muscle, but not markers of inflammation. It also shows that the QCT marker of air trapping is associated with increased vascularity. Finally I present a study looking at the use of QCT in assessing the effects of a new drug, fevipiprant, aimed at reducing sputum eosinophilia, over a 12 week course. This study shows that fevipiprant, improves some clinical outcomes such as spirometry and reduces sputum eosinophilia, but no structural changes are seen on QCT.

History

Supervisor(s)

Brightling, Christopher; Siddiqui, Salman

Date of award

2017-06-23

Author affiliation

Department of Infection, Immunity and Inflammation

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC