figshare
Browse
tmph_a_1255800_sm9436.doc (583.5 kB)

Tuning of carbon bonds by substituent effects: an ab initio study

Download (583.5 kB)
journal contribution
posted on 2016-11-17, 13:22 authored by Mehdi D. Esrafili, Hossein Kiani, Fariba Mohammadian-Sabet

An ab initio study, at the MP2/aug-cc-pVTZ level of theory, is performed to study σ-hole bond in binary XH3C···CNY complexes, where X = CN, F, NO2, CCH and Y = H, OH, NH2, CH3, C2H5, Li. This type of interaction is labelled as ‘carbon bond’, since a covalently bonded carbon atom acts as the Lewis acid in these systems. The geometrical and energetic parameters of the resulting complexes are analysed in details. The interaction energies of these complexes are between −4.97 kJ/mol in (HCC)H3C···CNH and −23.07 kJ/mol in (O2N)H3C···CNLi. It is found that the electrostatic interaction plays a key role in the overall stabilisation of these carbon-bonded complexes. To deepen the understanding of the nature of the carbon-bonding, the molecular electrostatic potential, natural bond orbital, quantum theory of atoms in molecules and non-covalent interaction index analyses are also used. Our results indicate that the carbon bond is favoured over the C-H···C hydrogen bond in the all complexes considered and may suggest the possible important roles of the C···C interactions in the crystal growth and design.

History

Usage metrics

    Molecular Physics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC